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Let’s go back to 1600s...

Chevalier de Mère was a nobleman who gambled frequently
He bet on a roll of a die that at least one 6 would appear
during a total of four rolls
From past experience, he knew that he was more successful
than not in this bet
He bet he would get a double 6 on 24 rolls of two dice
Soon, he realized that this bet was not as profitable
He asked his friend Blaise Pascal why
Pascal developed a correspondence with Pierre de Fermat,
and they are both credited with the founding of probability
theory

The key idea: a bet should be evaluated by its expected value.
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Calculating the Expected value

Consider a bet that pays $100 if some event happens, and
nothing otherwise. It is represented below:

100

0

p

1 − p

What is its Expected Value?

E [X ] = p · 100 + (1 − p) · 0 = 100p.
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Calculating the Expected value

Suppose that the event is the first bet considered by de Mere,
that is, to obtain a 6 if the dice is played four times. The
probability of not getting 6 in four rolls is:(

5
6

)4
≈ 0.48 < 1

2.

Thus, the probability of getting at least a 6 is:

p = 1 −

(
5
6

)4
≈ 0.52 > 1

2.

The Expected Value of playing the bet of $100 in this event is
therefore

E [X ] = p · 100 + (1 − p) · 0 ≈ 52 > 50.
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Calculating the Expected value

Now, assume the event is the second bet considered by de
Mere, that is, to obtain a double 6 if the dice is played 24
times. The probability of not getting a double six in 24 rolls is:(

35
36

)24
≈ 0.509 > 1

2.

Thus, the probability of winning the bet is:

p = 1 −

(
5
6

)4
≈ 0.491 < 1

2.

The Expected Value of playing the bet of $100 in this event is
therefore

E [X ] = p · 100 + (1 − p) · 0 ≈ 49.1 < 50.
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So, is expectation is the answer?

In 1713, Nicolas Bernoulli proposed the following bet:
You toss a coin. In case of H, you receive $2. In case of T,
you toss it again.
If H, you receive $4. If T, you toss it again.
In each play, the value is doubled.

$2

$4

$8

· · ·

H

H

H
T

T

T
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A paradox!

How much is this bet worth?
How much would you pay to play it?

$2

$4

$8

· · ·

H

H

H
T

T

T

E[X ] =
1
22 +

1
44 +

1
88 +

1
1616 + ...

= 1 + 1 + 1 + 1 + ...
= ∞!
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The birth of expected utility

In 1738, Daniel Bernoulli (cousin of Nicolas Bernoulli),
proposed a solution to the paradox:

The determination of the value of an item must not
be based on the price, but rather on the utility it
yields... There is no doubt that a gain of one
thousand ducats is more significant to the pauper
than to a rich man though both gain the same
amount.

Daniel Bernoulli lived in St. Petersburg when he published his
solution—and this is how the paradox acquired its name
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How to solve

In fact, Bernoulli proposed u(x) = ln(x).
However, we have been using different functions. he solution
Given a utility function, say u(x) = xα, for α ∈ (0, 1),
In fact, if a person has a (reasonable) certainty equivalent CX
for X , we can find α that makes E [(X )α] = CX .
At least for this gamble, we could explain this individual’s
preference with this utility function
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Mean and Variance

In the analysis of the problem of portfolio selection, Markowitz
(1952) was the first to consider mean and variance to select
portfolios with different assets.

Mean: it is just the Expected Value (expectation) that we
have been considering:

If X is discrete: E[X ] =

N∑
i=1

pi xi ;

If X has a p.d.f. fX : E[X ] =

∫
αfX (α)dα.

Variance is defined by

Var[X ] ≡ E
[
(X − E[X ])2

]
> 0.
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Mean and Variance

The Expectation has nice linearity properties, that is,

E[αX + βY ] = αE[X ] + βE[Y ],

for any random variables X and Y and real numbers α,β ∈ R.
Using this property, we can simplify the expression of the
variance

Var[X ] ≡ E
[
(X − E[X ])2

]
= E

[
X 2 − 2XE[X ] + (E[X ])2

]
= E

[
X 2]− 2E[XE[X ]] + E

[
(E[X ])2

]
= E

[
X 2]− 2E[X ]E[X ] + (E[X ])2

= E
[
X 2]− (E[X ])2.
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Mean and Variance

The Variance indicates how risky an asset is. Indeed, if
X = E[X ] is risk free, we have

Var[X ] = E
[
X 2]− (E[X ])2 = X 2 − X 2 = 0.

(Recall that the variance is always non-negative. Thus, risk
free assets have minimal variance.)
Therefore, it is natural to think that an investor likes the
mean and dislikes the variance
With this idea, Markowitz represented assets in a graph mean
vs. variance and reasoned how to compare assets with
different pair (mean, variance)

Obs.: Sometimes it is convenient to use the standard deviation
σX ≡

√
Var[X ] as a measure of the risk of the asset X , instead of

just its variance Var[X ].
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Preference between Assets

E[X ] Mean

Std Devσx

A B

C

Less S.D. is better

More Mean is better

A is preferable to B because it has lower standard deviation
(it is less risky) and has the same mean;
C is preferable to A because it has higher mean and the same
standard deviation;
B is preferable to C are incomparable using only Markowitz’s
criteria.
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Mean and Variance

Notice that Markowitz’s criteria is a methodology to compare
prospects or assets;
But we have been using Expected Utility just for that!
Can we relate these two approaches?

Sure! Here, I will do this exercise using only the quadratic
utility function U(x) = ax − bx2, for a, b > 0 and X with
support contained in

[
0, a

2b
]
.

Let µ = E[X ] and σ2 = Var[X ] = E[X 2] − (E[X ])2. We have:

E[U(X )] = E[aX − bX 2] = aE[X ] − bE
[
X 2]

= aµ− b
(
σ2 + µ2).

We can obtain the set of points with the same expected utility
(indifference curve).
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Mean and Variance

We can obtain the set of points with the same expected utility
(indifference curve):

E[U(X )] = k ⇐⇒ aµ− b
(
σ2 + µ2) = k

⇐⇒ µ2 −
a
bµ+

(
σ2 +

k
b

)
= 0

⇐⇒ µ =
a

2b ±

√( a
2b

)2
−

(
σ2 +

k
b

)
Since the support of X is contained in

[
0, a

2b
]
, it does not

make sense the “plus” signal in ± above, because this would
imply µ > a

2b .
We can plot the above curve (with the minus sign) in the
Mean-Variance axes
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Mean and Variance

0

µ

σ

µ

σ
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Efficient Frontier

In any given market, there are a set of assets available, with
different means and variances/standard deviations.
Some of those assets will be dominated by preferable assets;
The set of undominated assets form the “Efficient Frontier”

µ

σ

Efficient Frontier

Dominated Assets
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Capital Market Line (CML)

If there is a risk free asset, we can connect this asset with a
point in the Efficient Frontier.
The line thus formed is called the Capital Market Line.

E[r ]

σ

Capital Market Line

Efficient Frontier

Dominated Assets

rf
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Capital Asset Pricing Model (CAPM)

Assumptions:
Markets are frictionless
Investors care only about their expected mean and variance of
their returns over a given period
Investors have homogeneous beliefs

CAPM Formula: Let M denote the market portfolio. For any
asset i ,

E[ri ] − rf = βi(E[rM ] − rf ),

where

βi =
cov(ri , rM)

Var[rM ]
=

E[ri rM ] − E[ri ]E[rM ]

Var[rM ]
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CAPM examples

The CAPM formula leads us to the Security Market Line
(SML)

E[ri ] − rf = βi(E[rM ] − rf ),

In a “CAPM world,” the SML

β0

E[r ]

Security Market Line
rf

“underpriced”

“overpriced”
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Structure of assets

There are n states of the Nature, S = {s1, ..., sn}.
There are m assets.
aij is the payment of asset i ∈ {1, ..., m} if the state of the
nature is j ∈ S.
A = (aij) ∈ Rm×n is the matrix of payoffs.
y = (y1, ..., ym) is the portfolio of assets; yi is the quantity of
asset i that is acquired (bought).
p = (p1, ..., pm) ∈ Rm \ {0} is the vector of prices of assets; pi
is asset i ’s price.

Definition (Arbitrage)

We say that the above structure does not allow arbitrage if there is
no y ∈ Rm such that y · A > 0 e p · y < 0.
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Farkas’ Lemma

Lemma (Farkas’ Lemma)

For any matrix A ∈ Rm×n, and vector b ∈ Rm, one and only one of
the following alternatives hold:
(1) ∃ x ∈ Rn, tal que Ax = b, x > 0.
(2) ∃ y ∈ Rm, tal que y · A > 0 e y · b < 0.

Ax = b, x > 0
~a1

~a2

~an

~b

b.y < 0, y .A > 0
~a1

~a2

~an
~y

~b
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Existence of a risk neutral probability

Definition (Arbitrage)

We say that the above structure does not allow arbitrage if there is
no y ∈ Rm such that y · A > 0 e p · y < 0.

Definition (Risk Neutral Probability)

We say that a probability π : 2S → [0, 1] is a risk neutral
probability if there exists a number λ ∈ R++ such that for each
asset i ∈ {1, ..., m},

pi = λEπ[ai ] = λ
n∑

j=1
π({sj })aij .
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Existence of a risk neutral probability

Theorem
There is no arbitrage if and only if there exist a risk neutral
probability.

Proof of Necessity.
If there is no arbitrage, that is, there is no y satisfying y · A > 0
and p · y < 0, then by Farkas’ Lemma ∃ π̂ > 0 such that A · π̂ = p.
Since p = (p1, ..., pm) ∈ Rm \ {0}, π̂ 6= 0 and λ ≡

∑n
i=1 π̂i > 0.

Thus, π ≡ π̂
λ is a probability. Therefore, for each i = 1, ..., m,

p = A · (λπ) =⇒ pi = λEπ[ai ] = λ
n∑

j=1
π({sj })aij ,

as we wanted to show.
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Existence of a risk neutral probability

Proof of Sufficiency.
Let π be a risk neutral probability, that is, p = λAπ, for some
λ > 0. Assume that there is arbitrage, that is, there exists y
satisfying y · A > 0 and y · p < 0. However,

y · p = y · (λAπ) = λy · Aπ,

which must be non-negative because λ > 0, y · A > 0, and
π({sj }) > 0 for all j . But this contradicts y · p < 0.
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Conclusion

In this course, we have covered the following topics:
1 Expected values (means), variance and standard deviation
2 Expected Utility
3 Risk aversion, risk neutrality, coefficient of absolute risk

aversion
4 CAPM
5 Arbitrage Pricing
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